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What this talk is not about

This is not a description of the next iteration of the Fermi~LAT interstellar emission model.
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WHAT IS INTERSTELLAR EMISSION?

Typical definition

v » Interstellar emission arises from interactions between

W\N\N}y Stars cosmic-rays (CRs) and the interstellar medium (gas

and radiation).

» CR nuclei
» 7%—decay from interactions
with gas
» CR electrons (e and e™)
» Bremsstrahlung from
interactions with gas
> Inverse Compton (IC) from
interactions with radiation.
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WHAT IS INTERSTELLAR EMISSION?

Typical definition

7S » Interstellar emission arises from interactions between

W\N\Nﬁy Stars cosmic-rays (CRs) and the interstellar medium (gas

and radiation).

» Supernova remnants (SNRs) interacting with
molecular clouds

@% > Are these freshly injected CRs and therefore

interstellar emission?

> CR nuclei » Superbubbles (e.g. Loop I)
» m’—decay from interactions » Should these be considered supersized SNRs?
v 25 » The Fermi bubbles.
> CR electrons (e* and e™) » Depends on interpretation (Talks by Meng Su and
» Bremsstrahlung from Vladimir Dogiel)

interactions with gas

> Inverse Compton (IC) from S d hareed | idered CR
interactions with radiation. > >econdary chargec parch s are considere >

- B, _— —— — — —

» Emission from DM annihilation
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THE INTERSTELLAR GAS

Radial distribution in and near the plane

» Mass fraction of hydrogen is ~ 75% and helium 1.2 ——————
is ~ 25%. A Hydrogen distribution

» Hydrogen observed in three phases: i
» Atomic (H1): The most massive phase with a | \/
large filling factor. Scale height approximately
200 pc.
» Molecular (H2): The densest phase, very
clumpy. Scale height approximately 100 pc.
> lonized (H11): The least significant
component with a large scale height. Scale 04l /
height approximately 1 kpc. ‘ 7[\
> Helium assumed to have the same distribution sl //‘7\
as hydrogen. e L \/\
> Rest of the interstellar medium is not i \ .
interesting as targets for CRs, but it can 0 2 4 6 8 10 12 14 16 18 20
provide important information on the 8, Kpc
distribution of Hydrogen. Moskalenko et al. 2002, ApJ 565
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AToMICc HYDROGEN

» Emits radiation at 21 cm wavelengths.
» Not optically thin along the plane, need to correct for optical depth
» Usually done using the approximation of a homogeneous line of sight

i (v) = —tog (1= - D) Ta(we

where v is the observed Doppler velocity, Ts(v) is the spin temperature, T(v) is the
brightness of the emission expressed as temperature, Ty, ~ 2.7 K, and C is a constant.
> Need to know Ts(v) for all lines of sight but usually assume a single value for the entire sky.
v

LAB survey (Kalberla et al. 2005, A&A 440)
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AToMICc HYDROGEN

» Emits radiation at 21 cm wavelengths.
» Not optically thin along the plane, need to correct for optical depth
» Usually done using the approximation of a homogeneous line of sight

i (v) = —tog (1= - D) Ta(we

where v is the observed Doppler velocity, Ts(v) is the spin temperature, T(v) is the
brightness of the emission expressed as temperature, Ty, ~ 2.7 K, and C is a constant.
> Need to know Ts(v) for all lines of sight but usually assume a single value for the entire sky.

LAB survey (Kalberla et al. 2005, A&A 440)

This is the “easy” component!

» Works very well at high latitudes where
optical depth is small.

» Significant issues in the plane where
optical depth is larger, especially the inner
Galaxy.
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MOoOLECULAR HYDROGEN

» No line emission from cold H, — Need to use a surrogate tracer.
» The most common tracer is the CO molecule that forms under similar conditions as Hy.
» The CO line emission is collisionally excited by H>.
» The column density of Hj is found observationally to be roughly linearly dependent on the
integrated line intensity of the CO line emission (Wco)

N, (v) = XcoWeo(v).

» Xco has been shown to vary throughout the Galaxy and even in the local (< 1 kpc) medium.

CO survey ( e et al. 2001, ApJ 547)
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MOoOLECULAR HYDROGEN

» No line emission from cold H, — Need to use a surrogate tracer.

» The most common tracer is the CO molecule that forms under similar conditions as Hy.
» The CO line emission is collisionally excited by H>.
» The column density of Hj is found observationally to be roughly linearly dependent on the
integrated line intensity of the CO line emission (Wco)
N, (v) = XcoWeo(v).
» Xco has been shown to vary throughout the Galaxy and even in the local (< 1 kpc) medium.
4

CO survey (Dame et al. 2001, ApJ 547)

CO is not a perfect tracer of Hj

> Need other tracers as well to account for
CO dim Hy:
> Dust (Talk by Isabelle Greinier)
» Other line emitter, e.g. OH (Talk by
Ronald Allen) or C 11
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THE DARK NEUTRAL MEDIUM

» Defined as gas not traced by H1 and CO emission line surveys
» Was revealed for the first time using ~-rays and dust in analysis of EGRET data (Grenier et
al. 2005, Science 307).
» This gas is likely low density H, on the outskirts of molecular clouds that is not dense
enough to shield CO from UV-light.
» Interstellar dust is mixed with interstellar gas.
» Can be used as an alternative tracer of interstellar gas to probe the dark neutral medium.
» Can also correct for incorrect Ts values in HI. )

E(B-V) (Schlegel et al. 1998, ApJ 500)

mag

:
10.0  30.0
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THE DARK NEUTRAL MEDIUM

» Defined as gas not traced by H1 and CO emission line surveys
» Was revealed for the first time using y-rays and dust in analysis of EGRET data (Grenier et
al. 2005, Science 307).
> This gas is likely low density H, on the outskirts of molecular clouds that is not dense
enough to shield CO from UV-light.
> Interstellar dust is mixed with interstellar gas.
» Can be used as an alternative tracer of interstellar gas to probe the dark neutral medium.
» Can also correct for incorrect Ts values in H1.

E(B-V) (Schlege et al. 1996, Ap) 500)

» No distance information in dust emission,
need absorption measures for distance
estimates.

» Dust emission is strongly temperature
dependent that can be difficult to correct
for near star-forming regions.

» The dust to gas ratio is not constant
throughout the Galaxy.
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RoTATION CURVES

Gas Placement Illustration

» Doppler shift of emission lines used to place gas
given a model for its rotation around the Galactic
center.

i i SUN: Vi
» Circular rotation assumed. .

> Near—far ambiguity in the inner Galaxy.
» Does not work for directions near dotted line.

Clemens 1985, ApJ 295
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RoTATION CURVES

Gas Placement

» Doppler shift of emission lines used to place gas
given a model for its rotation around the Galactic
center.

» Circular rotation assumed.

» Near—far ambiguity in the inner Galaxy.
» Does not work for directions near dotted line.

Some known issues

» Non-circular rotation:

» Turbulence
» Streaming

» Large scatter in measurements, especially in the
outer Galaxy.

» Kinematic resolution limited to ~ 1 kpc.

N

Illustration

Gulli Johannesson (HI)
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THE INTERSTELLAR RADIATION FIELD (ISRF)

Porter et al. 2008, ApJ 682
» Three main components:

» Stellar light.
» Dust re-emission of stellar light.
» The cosmic microwave background.

» Only directly observable from our position = Need
modeling codes to predict its distribution.
» Stellar distribution and properties.
» Dust distribution and properties.
» Radiative transport.

A, (um eV om? )

| L sl 2l 2 1anl 21l L1
10" 1 10 10°

102
A (um)

» Inverse Compton (IC) cross section is angle dependent so we need angular dependent
SEDs throughout the Galaxy.

> A skymap of SEDs at each grid point.
» Current models are axisymmetric but three dimensional models are in the pipeline.

» Significant freedom in model properties, especially in the inner Galaxy.

Gulli Johannesson (HI)
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CR DISTRIBUTION

» Only directly observable from our position.
» No directional information in observations.

» Source properties badly constrained.
v

Example CR source distributions

woow
> wu o

W
[

CR source density [arbitrary units]

15 20 25 30
R [kpc]
Ackermann et al 2012 ApJ 750 http://www.wolaver.org/Space/milky_way_illustration.htm
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CR DISTRIBUTION

» Only directly observable from our position.
» No directional information in observations.

» Source properties badly constrained.

Template method

» Uses templates for the target properties Propagation method

and determines the CR distribution from a » Assumes CR source properties and
fit to y-ray data propagation parameters to determine the
» Does not depend on source properties and CR distribution solving the propagation
equation.

propagation.

» Fast method, no need to solve complex > Not biased by unmodeled components.

propagation equations. » Smoothly varying CR distribution.

» Generally gives a better representation of » Self-consistent IC emission.
data.

.
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CR DISTRIBUTION

» Only directly observable from our position.
» No directional information in observations.

» Source properties badly constrained.

Template method

>

Uses templates for the target properties
and determines the CR distribution from a
fit to v-ray data

Does not depend on source properties and
propagation.

Fast method, no need to solve complex
propagation equations.

Generally gives a better representation of
data.

.

Potential merger solution

Propagation method

» Assumes CR source properties and
propagation parameters to determine the
CR distribution solving the propagation
equation.

» Not biased by unmodeled components.

» Smoothly varying CR distribution.

» Self-consistent IC emission.

Create templates using propagation codes and fit them to data. Feed fit results to propagation
code and iterate.

Gulli Johannesson (HI)
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CR DISTRIBUTION

Fermi~LAT is crucial for CR physics

> ~-rays are the best way we have to probe the distribution of CRs in the Galaxy and learn
about their origin and propagation.

» Fermi-LAT data have been invaluable in learning about CR properties in:

» Local region: » Galactic halo:
» Abdo, A. A. et al. 2009, ApJ, 703 > Tibaldo, L. et al. 2015, ApJ, 807 and
» Abdo, A. A. et al. 2009, Phys. Rev. poster at this symposium.
Lett., 103 _ » External galaxies:
g ?;;e'ma“”' U el U ST > Abdo, A. A. et al. 2010, ApJL, 709

Abdo, A. A. et al. 2010, A&A, 523
E. Murphy et al. 2012, ApJ, 750
Ackermann, M. et al. 2015, A&A,
accepted

» Ackermann, M et al. 2012, ApJ, 756
» Ade P. A. R et al. 2015, A&A, 582
» Casandjian, J-M. 2015, ApJ, 806

» Outer Galaxy:
» Abdo, A. A. et al. 2010, ApJ, 710

» Ackermann, M. et al. 2011, ApJ, 726
» Ackermann, M. et al. 2012, A&A, 538

vyVvVY
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PASS 8 PERFORMANCE

Performance Comparison

» Pass 8 was a complete overhaul of the entire data acceptance
processing pipeline providing improvements in all %
N 25 o= =
areas. 3 / \
. . 8 2 AT
» Many thanks to the people putting in the hard 5 / /” \ \
work to make this a reality. g // \ \
- o . —*— P8R2_SOURCE V6
» Most notable improvements for interstellar emission ! - -
modellng 05 / —*— P7REP_SOURCE_V15
> Increased acceptance at lowest and highest 0 , § L ; L
. 10 10 10 10 1% M
energiles. neray (MeV)
> Better PSF over all energy ranges. o Acceptance weighted PSF
> Split into PSF subclasses allows for optimal 3 v bam2 soURGE 6
resolution. 30l N e P7RER.SOURGEVIS
. : TN —
> Together this allows for better separation of 2 \ B
components at all energies and therefore a better 5! N
Q
model. . \ DS
. . . . . 10‘ Ty
> Interstellar emission modeling is systematically \’\HM
limited over nearly the entire energy range of the 102 , . - 5 I
I ° 10 10 10 1%nemv {MeV)
Fermi—LAT. y

5,
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PAss 8 vs. PAsSs 7 REPROCESSED

Pass 7 reprocessed, source front, > 1 GeV, 4 year counts

.................................................................................

................................................................................

Counts / pixel
100
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PAss 8 vs. PAsSs 7 REPROCESSED

Pass 8, source PSF3, > 1 GeV, 4 year counts

.................................................................................

e TR, S R R P P R B & e

................................................................................

_::| Counts / pixel
3 3 100
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PAss 8 vs. PAsSs 7 REPROCESSED

Zoom in on the GC, 60° x 60°

Pass 7 Pass 8

___anam |
10 30 100 3 10 30 100
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COMPARISON AT LOW ENERGIES

50 MeV — 100 MeV, 4 year counts

Pass 7 front . Pass 8 PSF3

Counts / pixel Counls/pixcl
0 50 100 150 200 250 0 50 100 150 200 250
» More statistics with Pass 8 at low energies degrades the average PSF over the total energy
range.
» The Pass 8 PSF3 class still provides a better angular resolution with higher statistics
compared to Pass 7 reprocessed front.
» Will provide significant improvement in discriminating components at these energies.
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A NOTE ON ENERGY DISPERSION

» Energy dispersion has not been previously taken into account in model fitting so far
because it only affects the spectrum at low energies (< 500 MeV) and the fit gives the
spectrum in observed energies.

» Combination of energy dependence of effective area and energy dispersion cause a few
percent effect at a few GeV with Pass 8.

» Causes discrepancies if we use physical models for the spectrum.

» Energy dispersion also affects effective PSF.

» Causes a few percent effect around the Galactic plane below few hundred MeV. Important to
account for this effect.

Relative residuals Relative residuals
0.15 0.1
/ela ON-OFF without edisp ‘ela ON-OFF with edis|
0.1 0.
0.05 0.05
+ *‘
it +H'+ 1] FE AT, H-Il
0 1 0 "y e i
L 1] i + b
R
0.05 -0.05
0.1 0.
o PPN I DS TR PRI VR IURR PO [ {8 PR NS I Y TS EUE S P
2 15 25 35 45 15 2 25 35 45
logE logE
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HicH RESOLUTION H1 SURVEYS

» To fully utilize the improved PSF of the Pass 8 data we need higher resolution HT surveys;
The LAB survey is limited to ~ 0°.5 resolution.
» GASS (McClure-Griffiths et al. 2009, ApJS 181) and EBHIS (Kerp et al. 2011, AN, 6) will
provide full sky coverage with ~ 0°.1 resolution and same sensitivity as LAB.
» Higher resolution surveys can also help with identifying regions with large optical depths.
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HicH RESOLUTION DUST SURVEYS

» Planck dust extinction maps (Planck Collaboration XI 2014, A&A, 571) are providing
better temperature correction and higher resolution compared to the previously used SFD
maps.

> Revealing with help from ~-rays a better (and more complex) correlation between dust
opacity and gas column density (Talk by Isabelle Grenier).

HFI Planck 7353 extinction map R1.20

e e T s e e e g o e D
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HicH RESOLUTION DUST SURVEYS

» Planck dust extinction maps (Planck Collaboration XI 2014, A&A, 571) are providing
better temperature correction and higher resolution compared to the previously used SFD
maps.

> Revealing with help from ~-rays a better (and more complex) correlation between dust
opacity and gas column density (Talk by Isabelle Grenier).

HFI Planck E(B-V) extinction map R1.20

mag
0.1 03 1.0 30 10.0 30.0
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HicH RESOLUTION DUST SURVEYS

» Planck dust extinction maps (Planck Collaboration XI 2014, A&A, 571) are providing
better temperature correction and higher resolution compared to the previously used SFD
maps.

> Revealing with help from ~-rays a better (and more complex) correlation between dust
opacity and gas column density (Talk by Isabelle Grenier).

SFD E(B-V) extinction map

mag
0.1 03 1.0 30 10,0 30.0

Gulli Johannesson (HI) 6th Fermi Symposium, November 12, 2015




H1 OpricaAL DEPTH CORRECTION

» Using a single value for Ts throughout the sky is barely a zeroth order correction for
optical depth.
» The value has been shown to vary significantly throughout the sky creating error in Ny, of
the order of 40% close to the Galactic plane.
Strasser & Taylor 2004, ApJ 603
800 T T T T
o 600 - 1
% 400 B
3 |
5 |
—150 —100 =50 200 |
200 ! : v ]
< 300 k E J
A 200 = b
m L Ju | =
¥ 100 i éﬁ‘%ﬁ ] 0 100 200 300 400
0E - . . T, (K)
-150 -100 -50 Q =
Velocity (km / s)
Fic. 4—Distribution of spin temperatures for all channels where Ty, oir
Fi. 3.—Spectra for 87GB 032246.6+572847 (T, = 77 K) S/N > 5. The last bin contains all channels with 7, higher than 450 K.
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THREE DIMENSIONAL STARLIGHT EXTINCTION

» Using distance estimates to stars along with their absorption we can derive a three
dimensional dust absorption map

v

Not affected by the near-far ambiguity.

Works in the GC and anti-GC.

Still affected by gas-to-dust ratio and we must assume some H1 — H ratio.

Requires significant amount of work to get a complete map of the Galaxy; is still limited to
small regions

vvyy

> First attempt using alternative gas maps in the inner Galaxy from starlight extinction data
by Schultheis et al, arxiv:1405.0503 (Talk by Dmitry Malyshev)

Using SL extinction Original gas maps

o 20 60 20 60
£ 54 54
o s LI 48

I 3 2 3 42
‘9 - 6 g 36
e N .
=y ' . 24 g 24
= 3 10 w 10 ®
T ° 2 °© 12

= -5 i 6 -15 6

P Inner ring (0 — 1.5 kpc)

2915 10 5 0 -5 -10-15-20 ° 235015 10 5 0 -5 -10-15-20 °

Galactic longitude (deg)

Galactic longitude (deg)
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RoTATION CURVES

» The used rotation curve has a non-trivial effect on how we assign the gas column densities
to galacto-centric annuli.

» Figure shows difference in a few H1 annuli using rotation curve of Clemens 1985 and that of
Sofue et al. 2009.
» The changes correspond to roughly 30% difference in column density between rings.

Rotation curve from Sofue et al. 2009, PASJ 61 Difference in a few annuli

40 45kpc
3‘.‘“ R S RSO R S [ u.c s
5.0-5.5kpe
o - ,;.:.c;,,
P — TR
~10 -5 0 5 10
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THREE DIMENSIONAL ISRF

» Adding spiral arm structure and a bar to the ISRF model can significantly improve the
agreement with observations.

> Should not come as a surprise because we know our Galaxy is a spiral arm galaxy and more
degrees of freedom usually improve the fit quality.

» This does not come for free, the increase size in the parameter space makes it more
difficult to find the best model.

» The resulting ISRF model also takes an order of magnitude more space than the
equivalent axisymmetric model

» The 3D ISRF model is preliminary, we are still scanning the parameter space for a better
model.

» The 2D model showed here is not the “Standard” model distributed with GALPROP but
rather the axisymmetric version of the 3D model.
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THREE DIMENSIONAL ISRF AND IC EMISSION

IC with 2D ISRF at 200 MeV

...............................................................................

sremsaseduysaarass s nananabonsastnantosasansnafrasansnonforasanonpnrannnans

Bem s sr ! Mev !
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THREE DIMENSIONAL ISRF AND IC EMISSION

IC with 3D ISRF at 200 MeV

...............................................................................

sremsaseduyaaarass s nananabonsastnastosasansnafrasansnonforasansnpnrannnans

Bem s sr ! Mev !
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THREE DIMENSIONAL ISRF AND IC EMISSION

Difference between 3D ISRF and 2D ISRF at 200 MeV (3D - 2D)
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THREE DIMENSIONAL ISRF AND IC EMISSION

» When creating the PTREP IEM we included a filtered residual component in the model to
account for structures in the model that did not have a proper template (Casandjian et al.
arXiv:1502.07210).

» The differences between the 2D and 3D model are of the same order of magnitude as the
extra emission template

» Some of the structures might be related to 3D structures in the ISRF
> The sign is incorrect, but fitting other components in a template method may create the
positive structure in the residual component. This has not yet been tested.

204 Mel"

10 7em 2 s~ st Mev!

| r——— e P
—-10 —05 00 05 10 !

0 1 4 gx0°®
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THREE DIMENSIONAL CRS

» We can also try to put some of the CR sources into a spiral arm structure.

» Following figures from a toy model containing spiral arms with density three times higher
than that of the disk.

» These have not been tuned to 7-ray data; They are for illustration only
» The models shown below have either a 2D or 3D ISRF as indicated.

3D CRs with 2D ISRF IC at 200 MeV 3D CRs with 3D ISRF IC at 200 MeV

10 *om s s Mev !

10 "o Z s s MeV !
I3 10 30 13 10 30
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THREE DIMENSIONAL CRS

» We can also try to put some of the CR sources into a spiral arm structure.

» Following figures from a toy model containing spiral arms with density three times higher
than that of the disk.
» These have not been tuned to -ray data; They are for illustration only
» The models shown below have either a 2D or 3D ISRF as indicated.

(3D CRs, 2D ISRF) - (2D CRs, 2D ISRF) (3D CRs, 3D ISRF) - (2D CRs, 2D ISRF)

"10’7 em 2 s~ sr! MeV ™!

| aEE— | |
-10 -05 00 05 1.0 -10 -05 00 05 1.0
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MORE ON LOwW ENERGIES

» Electron induced emission more prominent, both IC and bremsstrahlung.
» Getting constraints on the electron distribution from other data important.
> CR electrons are strongly affected by heliospheric propagation.

» Synchrotron emission can give important information on the CR electron spectra at low

energies.

Synchrotron results from Orlando et al. ICRC 2015
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CONCLUSIONS AND OUTLOOK

» Modeling the interstellar emission is a non-trivial task.
» Many components, all of which have uncertainties to various degrees.
» Important to simultaneously determine point source properties when modeling the
interstellar emission.
» Pass 8 data provides improved resolution and acceptance that will help with source
confusion.
> Interstellar emission modeling is generally not statistically limited, but improved statistics
allows us to make more severe quality cuts for better modeling.
» Synergies with multi-wavelength data like Planck and radio line emission surveys can allow
us to study the physics of the interstellar medium with Fermi~LAT data.

» New and interesting modeling capabilities required to explain the high quality data the
Fermi~LAT has been accumulating over the years.
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